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Abstract. Second-class currents, i.e those of irregular G-parity in the definition of Weinberg, induce dif-
ferences between the ft-values for positive and negative electron emission in the mirror beta-decay of
complex nuclei and, together with weak magnetism, there affect various correlation phenomena. Such
currents might arise either from (strong-interaction-clad) NNeν vertex terms or from the in-flight de-
cay of exchange mesons, most probably ω → πeν, or from both, in the manner first explored in detail
by Kubodera, Delorme and Rho. The nucleonic and mesonic effects can be (partially) disentangled only
by studying a suite of cases and inter-relating those cases through suitable many-body wave-functions.
Present data are analyzed to show that, at the 90% CL, the amplitudes of second-class (strong-interaction-
clad)-nucleonic-vertex and meson-exchange terms are both at least an order of magnitude below those of
corresponding first-class terms. These experimental upper limits are themselves about one order of mag-
nitude larger than the values expected from mu, md symmetry-breaking. Evidences from particle physics
are quantitatively comparable to, and consistent with, those from nuclear structure physics but are less
detailed and less surely based.

1 Introduction

1.1 Nucleonic beta-decay

Within the vector-axial paradigm of the standard model
the nucleonic weak current has leading terms in gV and gA,
belonging to the “point” nucleon, in the vector and axial
parts respectively. Lorentz co-variance requires additional,
momentum-transfer-dependent, terms namely those pro-
portional to gM (weak magnetism) and gS (induced scalar)
in the vector part and gT (induced tensor) and gP (in-
duced pseudo-scalar) in the axial part. Of these four
momentum-transfer-dependent terms, all induced by the
hadronic cladding of the primitive “point” nucleon, two,
namely those in gM and gP , are termed first class [1] in
that their signs follow those of the leading terms in their
respective currents under the transformation n↔ p; they
figure in the standard model. The other two momentum-
transfer-dependent terms, namely those in gS and gT , are
termed second class [1] in that their signs change relative
to those of their respective leading terms under n ↔ p;
they do not figure in the standard model. This imme-
diately gives the somewhat counter-intuitive expectation
that, most generally, although not within the standard
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model, mirror allowed beta-decay transitions do not have
the same ft-values e.g. the mirror decays of 12B and 12N
to the ground state of 12C do not go at the same intrinsic
rate.

Specifically, for an on-shell nucleon of initial and fi-
nal momenta pi and pf respectively, we have, in a usual
notation and convention:

〈pf |Vµ|pi〉 = iu(pf ){gV γµ + gMσµνqν + igSqµ}u(pi); (1)
〈pf |Aµ|pi〉 = iu(pf ){gAγµ + gTσµνqν + igP qµ}γ5u(pi).(2)

Most generally, one classifies the elements ∆Jµ of the
hadronic weak current Jµ = Vµ + Aµ in terms of their
behaviour, ∆Jµ = ±G∆JµG−1, under the G-parity oper-
ation G = CU where C is the charge-conjugation operator
and U is the charge-symmetry operator U = eiπT2 . This
full definition is necessary if mesons figure explicitly in
the initial and/or final states of the weakly-transforming
system but if they do not, and even if they figure mi-
croscopically in the internal description of those hadronic
states, as they might, for example, in nuclear beta-decay,
charge conjugation need not be invoked and we may make
the classification just in terms of U : ∆Jµ = ±U∆JµU−1.
This permits us, for example, to relate the beta-decay of
12B by e−-emission directly to that of 12N by e+-emission
to the same final state rather than by, as would be the
case using the full G-parity operation, relating the decay
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of 12B by e−-emission to that of anti-12N by e−-emission
thence, under CPT , to that of 12N by e+-emission. How-
ever, although the full G-parity is not needed to classify
nuclear beta-decay just with reference to its initial and fi-
nal states, whether or not we recognize the involvement of
exchange mesons internal to the nuclei, we will here con-
tinue to use that language to facilitate discussion of such
internal mesonic effects.

In the usual sign convention the leading term in the
vector current (1) transforms without change of sign under
the G-parity operation whereas the leading term in the
axial current (2) changes sign so that if, for example, in
an axial transition, the G-parity of an exchange meson
changes sign as that meson makes its contribution to the
overall nuclear beta-decay, by itself beta-decaying in flight
between two nucleons, its contribution is first class and if
it does not change sign its contribution is second class.

The first-class weak magnetism term gMσµνqν in the
weak nucleonic vector current (1) is measured by:

gM = (µap − µan)/2M

≈ 3.71/2M ≈ 1.98× 10−3 MeV −1 (3)

where µap and µan are the anomalous magnetic moments
of proton and neutron respectively and M is the nucleon
mass. The corresponding, induced tensor, term gTσµνqνγ5

in the axial current is second-class so it is natural to gauge
the strength of possible second-class currents in nucleonic
axial beta-decay by comparing gT with gM : this we shall
do. Now, as we have remarked, gT is zero within the stan-
dard model; non-zero values are contemplated only with
considerable awkwardness although they cannot be ex-
cluded on a fundamental basis [2] and they must figure
at some level, if only effectively, through mass-difference-
induced symmetry-breaking as we shall note shortly.

Of the remaining induced terms: the first-class pseudo-
scalar gP qν in the axial current is given by PCAC but its
contribution goes as the mass of the associate charged
lepton and, quantitatively, we need not consider it in the
context of nuclear beta-decay; the induced scalar gSqν in
the vector current is second class but is zero by CVC: we
do not question that here while recognizing that mass-
difference-induced symmetry-breaking effects will give to
it also a finite value at some level uninteresting for our
present enquiry into nuclear beta-decay. We therefore look
for second-class effects signalled by a finite value for the
induced-tensor coupling constant gT in the axial current
(2).

As we have already remarked, a finite value for gT is
indeed to be expected on a symmetry-breaking basis if
only because of the mu, md quark mass difference. Most
naively one might expect:

|gT /gM | ≈ (md −mu)/(md +mu) ≈ 0.3 (4)

(using, illustratively, mu,md-values from the middle of
their presently-stated ranges [3]). However, this expecta-
tion would not be proper because although the quarks are
the primary transforming entities in beta-decay the neu-

tron and proton are the effective transforming entities and
we might more reasonably expect [4]:

|gT /gM | ≈ ∆M/2M ≈ 7× 10−4 (5)

where ∆M is the neutron-proton mass difference.
An early estimate based on the dynamics of relativistic

current quarks [5] gave:

gT ≈ (md −mu)/2Mω (6)

where ω is a single-quark energy of about 400 MeV (for
an MIT bag of R ≈ (200 MeV)−1) so that we might then
expect gT ≈ 4 × 10−6 MeV−1. More-reliable estimates
of gT derive from the application of QCD sum rules to
mu, md symmetry-breaking which yields [6] (using mu =
(5.1± 0.9) MeV; md = (9.0± 1.6) MeV):

|gT /gM | = 0.0052± 0.0018 (7)

i.e.:
gT = (1.0± 0.4)× 10−5MeV−1 (8)

Symmetry-breaking estimates of gT are proportional
to md − mu for which the ostensibly-accurate value of
6.14± 0.36 MeV has been more recently quoted in associ-
ation with an analysis of ρo-ω mixing [7]. This would lead
to an estimate of gT about 60% larger than that of (8).

Any definite experimental signal in excess of gT ≈
(1− 2)× 10−5 MeV−1 would therefore be an indication of
possible new physics but an upper limit greater than this
would not impugn the standard model.

Interesting semantic questions are raised by these dis-
cussions of symmetry-breaking and the induced terms.
Distinction is sometimes drawn between “real” and “ap-
parent” effects. Thus, in the vector current, because dif-
ferent masses are inevitably involved for initial and final
states, CVC will be ipso facto eroded giving the opera-
tional appearance of a finite value for gS ; the formal rôles
of the gV and gS of (1) become to some small measure
merged so that the second-class niche occupied by gS ac-
quires some “contamination” by the first-class gV (see e.g.
[8]). It is then correct to argue that the second-class cur-
rent associated with the gS of (1) does not “really” exist
but is an illusion due to a structural defect namely the
subversion of isospin by mass differences. We may recall
the familiar example of super-allowed vector transitions in
nuclei within isospin multiplets. These take place at a rate
some 1% less than expected from CVC. We could there-
fore say that CVC has been broken by 1% by the mass
differences between the members of the isomultiplet. We
do not, however, say this because we prefer to express the
situation in terms of the breaking of the (nuclear) symme-
try of the isomultiplet which has the easily-understandable
effect of lowering the square of the nuclear matrix element
by 1% leaving the fundamental (nucleonic) CVC symme-
try intact (although itself prey to subversion by neutron-
proton, i.e. quark, mass differences). We put it this way
because we understand the structural defects from which
complex nuclei suffer on account of departures from per-
fect charge-independence of their internal constitution and
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the effect that those defects have upon the beta tran-
sition rate due to the (almost)-perfectly-CVC-respecting
nucleonic weak interaction. So also in the case of parti-
cles we might be able to understand operationally second-
class terms and, concomitantly, the departure from their
standard values of the first-class terms, by reference to
symmetry-breaking structural defects due to quark mass
differences etc. without reference to any “fundamental” fi-
nite gS and gT . However, we do not yet know enough about
particle structure and non-perturbative QCD to embark
whole-heartedly along this route, although we have noted
a significant beginning [6], and so we lump our ignorance
into an operational gS and an operational gT .

1.2 Exchange currents: the KDR model

We have so far, in (1) and (2), considered only second-class
effects associated with the isolated but strong-interaction-
clad NNeν vertex of free-nucleon decay. But since our
immediate concern is with the beta-decay of the complex
nucleus as a whole any experimental second-class signal
will stem not only from the strong-interaction-clad NNeν
vertex but also from any effect deriving from nucleon ex-
change currents; the nuclear context then also requires
that off-mass-shell effects, including NN terms, be ex-
plicitly reckoned with [9,10]. In the following we largely
follow [10] (call this the KDR model) and consider the
most-likely direct mesonic source of a second-class cur-
rent to be ω → πeν since the ωNN coupling constant
is large and the ω is the lightest meson of appropriate
quantum numbers, the ω being emitted by one nucleon
and the π being absorbed by another, the ω → πeν decay
taking place “in the air” between the two nucleons. (We
must also recognize that the π might be absorbed by the
same nucleon that emitted the ω this process then con-
stituting an element, or perhaps even the whole, of the
NNeν vertex gT .) This ω → πeν process is second-class
because ω and π are of the same G-parity while, as we
have noted, the G-parity associated with the leading term
changes in the axial weak hadronic current (2) with which
we are presently concerned. Of course, the KDR model
need not be specific to the ω-meson as the responsible
agency of second-class exchange: any meson, or combina-
tion of mesons, of appropriate quantum numbers might be
involved.

In a complex nucleus nucleons are off-shell and this
demands that the original strong-interaction-clad NNeν
term for a free nucleon associated with the induced tensor
take, in the simplest non-trivial formulation, the expanded
form:

i(gTσµνqνγ5 + ig′TPµγ5) (9)

the second term being associated with an exchange-pion-
induced NN -pair and the q and P referring, respectively,
to the difference and the sum of the initial and final nu-
cleon four-momenta. (Call (9) the expanded NNeν vertex
term.)

This leads us to define the constant:

ζ = gT + g′T . (10)

The ω → πeν exchange term is measured by a form fac-
tor Fω which, together with the reasonable assumption
that the pion is “soft” [11] leads to the exchange-related
constant:

λ =
m3
πg

2
πNN

24πM2

(
g′T −

gωNNFω
gπNNm2

ω

)
. (11)

All second-class observables may now be expressed
through combinations of ζ and λ; it is important to stress
that they must be; no single experiment on a single mirror
decay process can give information on gT .

1.3 Experimental searches

There are, broadly speaking, two chief modes possible for
search for second-class currents in complex nuclei. The
first mode considers mirror axial beta-decay and defines
the asymmetry:

δ = (ft)+/(ft)− − 1 (12)

where (ft)+ and (ft)− refer to the positive and nega-
tive electron emitters respectively. In the simplest (im-
pulse approximation) picture [12], which does not include
any meson-related or off-shell effects, δ is non-zero if gT ,
here a pure strong-interaction-clad NNeν vertex term, is
non-zero because the effect of gT , being second-class, by
definition adds to that of gA on one side of the mirror and
subtracts from it on the other and we have [12]:

δ = −4
3
gT
gA
W (13)

where W = W+
0 +W−0 , W+

0 and W−0 being, respectively,
the total end-point energies of the positive and negative
electron mirror decays. (We expect proportionality of δ to
W on account of the proportionality to qν of the gT term
in (2): the induced tensor is second-forbidden in nuclear-
structure parlance; we consider only decays that are ax-
ial and allowed over-all i.e. those of ∆J = 1 without
change of parity.) But, as we have seen, this impulse-
approximation picture is incomplete and we must also
reckon with the off-shell-related g′T and with ω → πeν
exchange, the former figuring in (10) and the two figuring
together in (11). This has the effect of replacing (13) by
[10]:

δ = −4λJ/gA +
4
3

(
1
2
λL− ζ

)
W/gA (14)

where J and L are nuclear-structure-dependent ratios of
2-body to 1-body matrix elements. In the impulse approxi-
mation J and L fall away, ζ reduces to gT and (14) reduces
to (13).

An important special case of this (ft)±-approach is
afforded by the comparison of 8Li and 8B decay. These
bodies decay to the broad Jπ = 2+ continuum that incor-
porates the first-excited state of 8Be nominally at about 3
MeV and this permits a differential determination of δ as
a function of excitation within 8Be, hence of the summed
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energy release W . This special case requires special treat-
ment beyond (14); it will be considered in detail later.

The second mode of search involves the comparison of
beta-particle-energy-dependent correlations between nu-
clear spin and direction of electron emission from the two
sides of the mirror or between the direction of emission of
the electrons and of some subsequent radiation. This de-
termines a combination of a second-class signal measured
by

κ = ζ + λL (15)

and an element due to the first-class weak magnetism
which must be separately assessed to extract the second-
class effect. We must assume that this separation of first-
class and second-class effects can be confidently performed
following “strong” CVC provided that the relevant electro-
magnetic information is experimentally available with ad-
equate precision.

1.4 Nuclear structure and the suite of data

We have already stressed that both in the (ft)±-approach
and in the correlation approach the experimental signal
involves both ζ and λ hence both the expanded, and
so exchange-related, strong-interaction-clad NNeν vertex
term and the ω → πeν exchange term that we are tak-
ing to be the chief explicit mesonic factor in the second-
class effect and that these ζ and λ contributions cannot be
separated in a single experiment on a single pair of mir-
ror transitions. A null result in a single experiment tells
us nothing about the strength of second-class currents in
general because, as we see from (14) and (15) the vari-
ous nucleonic and mesonic contributions might conspire
to zero although individual second-class terms might be
large. It is therefore essential, in placing a meaningful
limit on second-class currents in general, to have avail-
able a suite of experimental data derived from a range of
mirror transitions and to analyze it as a suite to separate
out and separately to assess the ζ and λ elements. That
is the chief purpose of the present paper.

It is evident that our analysis depends upon J and L,
the ratios of 2-body to 1-body matrix elements, the deter-
mination of which demands commitment to specific many-
body wave-functions for the nuclei involved. Such wave-
functions are also necessary for removing the effects of any
forbidden transitions not relevant for the present analysis.
Now, excellent many-body wave-functions are available for
all the bodies of concern in our present study but, unfor-
tunately, no extraction of J and L from them has yet been
made so we must continue to use the values following [10]
and [13] as quoted in [14]; these are probably reasonably
reliable in the light nuclei of present concern but values
from modern wave-functions would be very welcome.

An important element of our present uncertainty in
the evaluation of J and L concerns the importance of
short-range NN correlations within the many-body wave-
functions. The effect of these, supplementing the wave-
functions of [10] and [13] might be quite considerable [14]
but it is at present rather uncertain; its confident evalua-
tion must await the application of the modern many-body

wave-functions to which reference has just been made. We
do not attempt to take short-range correlations into ac-
count here in our primary analysis but will report below
on their effect as estimated following [14]. This considera-
tion re-emphasizes the high desirability of a critical mod-
ern analysis of the entire wave-function-dependent pack-
age: in that sense our present analysis is quantitatively-
illustrative rather than definitive.

1.5 Charge-dependence of the nuclear structure

A further uncertainty that plagues our analysis relates
to another aspect of the many-body wave-functions that
must be used: their respect, or otherwise, of the charge-
dependence of the NN force including the Coulomb in-
teraction. In both the (ft)±-approach and in the use of
correlations we are concerned with comparing effects from
the two sides of an isospin mirror. But that mirror is not
true: the various charge-dependencies distort the reflec-
tion so that the T3 and −T3 bodies involved in the decays
differ in structure to some degree and this mimics the
effect of a second-class current in, for example, making
(ft)+ 6= (ft)− even in the total absence of a second-class
current. This problem has long been recognized and stud-
ied in detail [15]; it, rather than experimental precision,
limits the sharpness with which we can confidently ex-
tract information as to ζ and λ from (ft)±-comparison.
This same problem also afflicts the correlation approach
although its importance there was, despite warnings [16],
long underestimated on the grounds that there the lead-
ing, i.e. gA-proportional, term in the allowed component of
the transition gives no signal; the considerable de facto im-
portance of such correction in correlation experiments has,
however, now been recognized and is, there also, beginning
seriously to limit the confidence with which a second-class
effect can be assessed [17].

2 The data base

2.1 (ft)±-values

Systematic search for second-class current effects began in
1970 [18] when it appeared that large values of the (ft)±-
asymmetry δ of (12) were found in many light-nuclear
systems. However, these values spread widely, were of ei-
ther sign and were not systematically related through a δ
such as that of (13) as was, at that time, to be expected
[12]. Subsequent experimental re-examination of many of
the cases brought better order into the ensemble [19] in a
manner not inconsistent, superficially, with gT ≈ gM i.e.
with equal strength for second-class and first-class cur-
rents. However, at the same time [15], evaluation of the ef-
fect upon δ of binding-energy differences across the flawed
±T3 mirror showed that the observed (ft)±-asymmetries
could well have that trivial origin.

After correction for these binding-energy differences
the ensemble of (ft)±-asymmetry defines the ellipse in the
ζ, λ-plane shown in Fig. 1. (In constructing this ellipse,
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Fig. 1. One-standard-deviation limits on the Kubodera, De-
lorme and Rho second-class parameters ζ and λ from the in-
dividual experimental approaches indicated on the bands and
from the ensemble of data on (ft)±-values indicated by the
ellipse. The filled area is common to all data. The result-
ing 90% CL values are: ζ = (0.04 ± 0.18) × 10−3 MeV−1;
λ = (0.5± 0.9)× 10−3

slightly up-dated from that in [16] following more recent
experimental information, only data from T = 1 decays to
a unique T = 0 final state have been used. T = 3

2 decays
to mirror T = 1

2 final states are unreliable for present
analysis [16] owing to strong binding-energy asymmetries
as between the T3 = ± 1

2 final states.)
The ellipse of Fig. 1 gives evidence for second-class

currents neither through the expanded NNeν vertex term
ζ nor through the exchange-related term λ but the limits
are not very tight, that on ζ corresponding, at 90% CL, to
no better than about 30% of the gM of weak magnetism.

2.1.1 The A = 8 system

Reference has already been made to the possibility pre-
sented by the A = 8 system of, in effect, investigating
the (ft)±-relationship as a function of the summed en-
ergy release W of (14) i.e of excitation energy within the
daughter nucleus 8Be. Experiment [20] showed no sign of
any significant change of the δ of (12) over a range of exci-
tation of about 7.5 MeV in 8Be corresponding to a range
of 15 to 30 MeV for W , certainly not the proportionality
of δ to W naively to be expected from (13), although δ
itself was everywhere quite large, viz. about 0.1.

The best estimate for the δ-value due to the binding-
energy effect alone was about 0.08 [15] so no significant
overall second-class current effect could be claimed since
the estimate of the binding-energy effect is itself signif-
icantly sensitive to details such as the choice of the ef-
fective optical model potential for the generation of the
single-particle wave-functions and the relevant parentage
structures of the initial and final states. It is, however, still

necessary to examine these “A = 8 slope” results in the
light of the KDR ζ, λ-model. This is not straightforward
[21] and is complicated by the fact that the profile of 8Be
as seen by its feeding through 8Li, 8Be beta-decay is sig-
nificantly different, particularly at high excitation energy
in 8Be, from the profile seen through the gamma-decay
of the state in 8Be analogue to the ground states of 8Li
and 8B [22,23]. (This analogue state in 8Be is actually
dissolved into a mixed T = 0 + T = 1 close doublet but
that involves only little complication.) The quantitative
explanation for this strikingly-different feeding of the con-
tinuum of 8Be through the beta and gamma channels is
yet to be determined: whether in terms of over-lapping
states in 8Be [24] or of some excitation-dependent con-
stitution of the very broad “first excited state of 8Be” in
question.

It was pointed out [25] that the predominant {431}
space symmetry of the initial 8Li and 8B beta-decaying
states cannot be changed by the axial operator and that
the predominant space symmetry of the broad 8Be state is
{44} so that the beta-transitions go only to a small admix-
ture of {431} into the broad state (as witness their quite
large log ft values of about 5.6). If we take the view that
the wave-function of the broad 8Be state is not a proper
eigenfunction but can have a make-up that is a function of
excitation then we may imagine that the {431} component
of the wave-function may be introduced perturbatively by
mixture with a general Jπ = 2+; T = 0 condition of 8Be
at higher excitation that need not be specified in detail so
that the ratio of {431} to {44} amplitudes in the broad
state will increase as we go towards higher excitation, i.e.
nearer to the {431} source. However, the {431} T = 1 ana-
logue(s) in 8Be of the 8Li and 8B beta-decaying ground
states can link by the space part of the M1 operator to
the dominant {44} component of the broad 8Be state (as
witness the healthy M1 |M |2-value of rather more than
0.1 in Weisskopf units) as well as, through the spin part,
to the smaller {431} component so that the axial operator
will be progressively favoured, relative to the M1 opera-
tor, as we go to higher excitations in 8Be, qualitatively
explaining the differing profiles of the final “state” as seen
through beta-decay and through gamma-decay.

It is evident that we do not, at present, have a suffi-
cient quantitative understanding of this situation in 8Be,
in particular the excitation-dependence effective for J and
L, to do other than take these as constants appropriate
to the nominal Jπ = 2+ first-excited state, analyzing the
experimental data using the modification of (14) appro-
priate for this case ((6) of [13]) and using the J ;L-values
from [13] which we shall do throughout the rest of this pa-
per. Some justification for this derives from the fact that
when the experimental excitation-energy-independent re-
sults for δ are corrected for the binding-energy effect, us-
ing J ;L-values appropriate for the nominal Jπ = 2+ first-
excited final state of 8Be, they remain excitation-energy-
independent [16] which they would not do if the effec-
tive wave-function for 8Be were itself significantly energy-
dependent.
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This defines the band labelled “A = 8 slope” in Fig. 1
[13]. We recognize that further analysis will be desirable
as our understanding of the wave-function situation in 8Be
improves.

2.2 Correlation experiments

Important constraint comes from experiments involving
beta-energy-dependent correlations with aligned or polar-
ized nuclei or with subsequent radiations.

2.2.1 A = 8

Energy-dependent correlations between the beta-particles
emitted in 8Li,8B-decay and the alpha-particles from the
subsequent break-up of the 8Be [26] combined with in-
formation from the radiative decay of the close doublet
analogue state(s) in 8Be [23] yield [23], in the notation of
Holstein [27]:

dII/Ac = 0.0± 0.3± 0.3 (16)

and:
dII/Ac = −(0.5± 0.2± 0.3) (17)

from the 1975 and 1980 experiments of [26] respectively
where, in the notation of the present paper:

dII/Ac = 2Mκ/gA. (18)

These results are also subject to the strictures con-
cerning the uncertain situation in 8Be that we have just
exposed. In the present case, however, the impact of those
strictures is not so severe since the correlation experiments
are dominated by the lower excitations in 8Be where we
may more confidently speak of a final state well-defined in
wave-function terms.

At this point it is necessary to determine how to han-
dle errors when they are of more than one type, statis-
tical and systematic, such as given in (16) and (17). Our
present objective is to set (conservative) limits on the pos-
sible strengths of second-class currents, rather than to de-
termine actual significant values, so it is appropriate, as
standard in such circumstances, to combine errors of dif-
ferent type by linear addition rather than by quadrature.
Doing this and combining the results of (16) and (17) we
find:

κ = −(0.20± 0.25)× 10−3 MeV−1 (19)

This value defines the band in Fig. 1 labelled “A = 8 β −
α”.

2.2.2 A = 12

There have been several experiments involving beta-
particle-energy-dependent correlations with aligned or po-
larized 12B,12N decaying to the ground state of 12C. These
yield:

κ = (0.20± 0.47)× 10−3 MeV−1 [28] (20)

κ = −(0.09± 0.32)× 10−3 MeV−1 [29] (21)

κ = −(0.14± 0.42)× 10−3 MeV−1 [30] (22)

κ = (0.15± 0.17)× 10−3 MeV−1 [17] (23)

Combining these date yields:

κ = (0.08± 0.14)× 10−3 MeV−1 (24)

and the band in Fig. 1 labelled “A = 12”.

2.2.3 A = 20

Beta-particle-energy-dependent/gamma-ray directional
correlations in the A = 20 system involving the first-
excited state of 20Ne in the decay of 20F and 20Na [31]
yield:

κ = (0.16± 0.51)× 10−3 MeV−1 (25)

This value defines the band in Fig. 1 labelled “A = 20”

2.2.4 Binding energy corrections

It should be remarked that some of the results displayed
as the bands in Fig. 1 have been corrected for nuclear-
structure-dependent binding energy effects and some have
not. The possible seriousness of such notoriously-tricky
corrections may be judged from the estimate in [17] where
the correction amounts to approximately one half of the
stated experimental error; corrections in most other cases
would be considerably less relative to their errors. Were
such corrections not made in [17] (23) above would read:
κ = (0.08 ± 0.13) × 10−3 MeV−1 and (24) would read:
κ = (0.05 ± 0.11) × 10−3 MeV−1 which would bring no
significant change to our conclusions.

2.3 Limits to ζ and λ

The filled area of Fig. 1 is common to all the data there
represented,(Note that if, following the above discussion,
the “A = 8 slope” data were, unjustifiably, to be com-
pletely discounted it would have very little effect upon
the filled area and so upon our subsequent conclusions.)
Further data from other experiments of lower accuracy in
other systems are available but do not affect the present
discussion.

By simultaneous analysis of the results displayed in
Fig. 1 we derive, at 90% CL:

ζ = (0.04± 0.18)× 10−3 MeV−1 (26)
λ = (0.5± 0.9)× 10−3 (27)

As remarked above, this analysis has been carried out,
following [10,13,14], using J ,L-values evaluated without
explicit regard for short-range correlations in the nuclear
many-body wave-functions. Repeating the entire analysis
with the inclusion of short-range correlations as estimated
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in [14] yields a ζ-value identical to that of (26) and a λ-
value of (0.6± 1.4)× 10−3 i.e. little changed from that of
(27). In the following we use the values given in (26) and
(27).

We immediately note that the 90% CL of 0.22× 10−3

MeV−1 on |ζ| is just about one tenth of the value of gW
given in (3) viz. 1.98 × 10−3 MeV−1 which establishes
the fact that the second-class term in the nucleonic axial
current, as defined through ζ, is substantially weaker than
the corresponding term in the vector current, a result that
could not have been arrived at without consideration of a
suite of data such as that analyzed here.

This upper limit for the second-class nucleonic effect
is approximately one order of magnitude greater than the
figure suggested by (8) as to be expected from mu,md

symmetry-breaking. This is a gauge of how close we may
be in these nuclear structure studies to becoming sensitive
to nucleon structure.

We also see from Fig. 1 and from (27) that there
is no suggestion of a second-class mesonic effect, specif-
ically ω → πeν, such as might give a significant value for
λ. We gain a impressionistic estimate of a limit to the
strength of the second-class ω → πeν by setting g′T equal
to zero in (11) and extracting Fω from λ. ( Note that
this heuristic procedure is equivalent to the assumption
that the putative second-class current is not conserved
since such Ansatz of conservation would imply λ = 0
or g′T = gωNNFω/gπNNm

2
ω from (11) hence Fω = 0 if

g′T = 0.)
This procedure is equivalent to deriving an effective

second-class gTω from (11), associated with ω → πeν, that
we may compare with the first-class gM of (3) to assess
the strength of the second-class relative to the related first-
class induced current. We now have:

gTω =
24πM2λ

m3
πg

2
πNN

(28)

that we may compare with the first-class gM of (3) gaining:

gTω/gM =
48πM3λ

m3
πg

2
πNN (µap − µan)

(29)

as a measure of the reduction of second-class relative to
first-class current strength in the mesonic sector. Putting
numerical values into (29) (using gπNN = 14) and the 90%
CL on |λ| from (27), viz. 1.4× 10−3, we find, at 90% CL:

gTω/gM < 0.09 (30)

suggesting that the inhibition by G-parity conservation in
the mesonic beta-decay ω → πeν is roughly comparable
to that which, through ζ, we have seen for nucleonic beta-
decay.

We may, alternatively, compare the Fω of our present
discussion with the corresponding quantity, Fρ, that in-
volves the rate of the allowed ρ → πeν, as might be en-
couraged by their relationship within the SU(3) classifica-
tion, asking for their relative impact upon their respective
exchange contributions. We have [10]:

Fρ =
gπNNm

2
ρ

2gρNNMgA
(31)

so that we gain another estimate of the effect of G-parity
conservation in inhibiting the amplitude of ω → πeν of,
setting mω = mρ:

Fω/Fρ =
48πM3gρNNgAλ

m3
πg

2
πNNgωNN

. (32)

Putting numerical values into (32) (using additionally
gωNN = 7; gρNN = 0.6) with the above 90% CL on |λ| we
find:

Fω/Fρ < 0.04. (33)

These limits have all involved, or have involved as-
sumptions about, the off-shell g′T . We may eliminate g′T
as between (10) and (11) to extract the composite second-
class on-shell quantity:

“gT ” = gT+
gωNNFω
gπNNm2

ω

= (0.03±0.13)×10−3 MeV−1 (34)

so that, at 90% CL:

“gT ”/gM < 0.12 (35)

All these rough estimates of the impact of G-parity
conservation in the mesonic sector suggest that it is worth
at least an order of magnitude in amplitude i.e. roughly
the same as we saw for the nucleonic sector. These effective
limits on Fω correspond to a partial lifetime for the free
decay ω → πeν of greater than 10−7 sec, or so, i.e. a
branch of less than about 10−15 in overall ω-decay (which
has Γ = 8.4 MeV.)

Of course, we cannot cleanly separate intrinsically
“nucleonic” and “mesonic” second-class effects such as
ω → πeν: the latter would, if present, manifest itself not
only as an exchange term, as we have considered it here,
but also by effectively generating a component, or the
whole, of gT and g′T by renormalization of the NNeν ver-
tices. This emphasizes the roughness of our setting g′T = 0
at the same time as seeking a limit for ω → πeν.

3 Evidences from particle physics

It is of interest to compare these nuclear-structure lim-
its on second-class currents with those deriving from the
particle field.

3.1 τ → ωπν

The decay τ− → ωπ−ν involves the ω of Jπ;TG = 1−;0+

and the π of Jπ;TG = 0−;1−. The decay can yield fi-
nal hadronic ωπ-states of overall Jπ = 1− in a first-class
vector decay or of overall Jπ = 1+ or Jπ = 0+ in second-
class axial or vector transitions respectively, the first-class
and second-class effects being distinguishable by angular-
distribution analysis. Experiment yields branching frac-
tions for τ → ωπν of 0.0195 ± 0.0007 ± 0.0011 [32] and
0.0191 ± 0.0007 ± 0.0006 [33] against the CVC expecta-
tion for the first-class decay of 0.0179±0.0014 [34]. These
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figures correspond to a 95% CL of a little over 20% on a
relative second-class contribution. A slightly sharper 95%
CL of 8.6% derives from a study of the angular relation-
ships in the decay [33]. This process does not, therefore,
set a limit of better than about 30% on the magnitude of
the second-class relative to the first-class coupling ampli-
tude.

3.2 τ → ηπν

The decay τ− → ηπ−ν is forbidden by G-parity conser-
vation since the η is Jπ;TG = 0−;0+. The limit on this
branch in τ -decay is 1.4 × 10−4 at 95% CL [35]. Here we
have no obvious point of first-class comparison as we had
for τ → ωπν but we may note that the branching fractions
for the G-parity-allowed cases τ → η2πν and τ → η3πν
are about 1.8× 10−3 and 5× 10−4 respectively [3] so that
“adding another pion” reduces the branching fraction by
a factor of about 4. We also note that the branching frac-
tions for τ → 3πν, 4πν, 5πν and 6πν are about 0.09,
0.04, 0.005, and 0.0003 respectively [3] again suggesting
that “adding another pion” gives a decrease in the intrin-
sic branching probability of order 4 allowing for decrease
of phase space. We may therefore, if extremely crudely,
guess that a “G-parity-allowed” branch for τ− → “η”π−ν
might have had a strength of about 4 × 1.8 × 10−3 with
which we might compare the τ → ηπν limit of about 50
times less. We might then say that the upper limit on the
magnitude of the relevant second-class coupling constant
is somewhat less than 10 times less than that of the al-
lowed but it must be freely admitted that this is little
better than an informed guess.

This crude limit for the second-class coupling of a fac-
tor of about 10 below the allowed first-class coupling am-
plitude is just about the same as we have derived from our
study of complex nuclei by comparison of (8) and (26) al-
though the quantification from complex nuclei is much the
surer.

It is also interesting to note that an estimate of
this ηπν branching ratio in τ -decay, based upon isospin
breaking in chiral perturbation theory stemming from the
mu,md mass difference plus a QCD sum rule analysis for
the vector meson decay constant Fa0 , is about 1.2× 10−5

[36]. This also suggests that experiment may be only one
order of magnitude away from detecting a second-class
signal in τ -decay just as we have seen it to be in nuclear
beta-decay [6].

3.3 νµp→ µ+n

Second-class effects would influence νµp→ µ+n and have
been sought there [37]. A major problem in the quantita-
tive analysis is the value of the mass term to be used in the
second-class form factor. The experiments [37] were car-
ried out using anti-neutrinos of up to Q2 ≈ 1.0(GeV/c)2

within which range the effect of the mass term in the
dipole parameterization of the form factor might be quite
considerable. Now, in the absence of a specific model for

the second-class current we have no guidance as to the size
of the mass term but if we were arbitrarily to use 1 GeV,
as would be appropriate for the allowed axial coupling, we
would find from the νµp → µ+n analysis |G2(0)| < 0.25
at 90% CL, where G2 is the induced tensor form factor,
to which corresponds |gT /gW | < 0.15 to compare with the
|gT /gW | < 0.1 that we have presented from our nuclear
structure studies. We see that, at present, the neutrino
reaction does not improve our knowledge of second-class
currents but is nicely complementary to it.

4 Conclusion

Studies of the beta-decay of complex nuclei set 90% con-
fidence limits on the amplitude of second-class effects at
the (strong-interaction-clad) NNeν vertex and also in ex-
change currents at about 10% of the amplitude of the cor-
responding first-class terms. This conclusion is supported
by evidence from particle studies although there the in-
ferences are not so general and are more oblique.
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